On Using Approximations in Engineering Optimization

Natalia M. Alexandrov

Multidisciplinary Optimization Branch http://fmad-www.larc.nasa.gov/mdob

NASA Langley Research Center Hampton, Virginia

Outline

- Background
 - Motivation
 - Some Recent Developments in Approximations for Engineering
- Model Trust-Region Approach with General Approximations
 - The Model-Management Framework
 - Convergence Analysis
 - Example (Eddy-Promoter Heat Exchanger)
- Current Research
 - Constraints and MDO
 - Novel Applications (HSCT, Aerospike, Rotorcraft)
- Summary

Approximations-in-Optimization Problem

The problem:

minimize f(x)

The essential problem is multidisciplinary and has special structure, but here will consider single discipline, unconstrained optimization.

Motivation

- Address computational expense issues of using high-fidelity approximation models in optimization (Example: Navier-Stokes vs. Euler)
- Allow for easier integration of disciplines in multidisciplinary context
- Allow for interactive design

Some history

- Schmit, et al. First explicit coupling of structural analysis and nonlinear programming (1960); Some approximation concepts for structural synthesis (1960)
- Fleury, et al. (1989) Approximation strategies in structural optimization (analysis)
- Barthelemy, et al. (1993) Overview of approximation concepts in structural design

– . . .

Approximations-in-Optimization Problem (cont.)

Existing practices

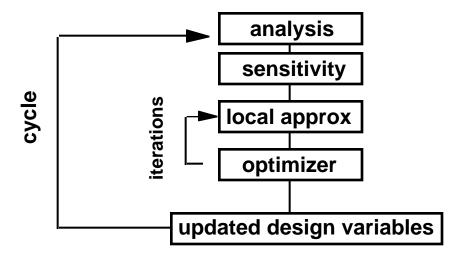
- Use a variety of fidelities for models or approximations managed via heuristics
- Examples: physical models, statistical models, move limits

Difficulties with heuristics

- There is no guarantee that a design that promises improvement with a low-fidelity system will yield improvement in the high-fidelity system
- It is not clear when to refine the model
- Robustness is not assured

Existing Practices: Example

Optimizer and approximate analysis optimization scheme for HSCT (Walsh, et al.)



- Evaluate objective, constraints, and derivatives of objectives and constraints at the beginning of cycle; f_0 is a coupled Navier-Stokes and finite-element analysis
- During optimization iterations, do ... call optimizer with f $f_0 + f_0/x \times x$ (similarly for constraints g) + move limits end do

Some Recent Developments in Engineering Approximations

- Research conducted or supported at NASA Langley:
 - Design-oriented analysis and approximations
 - E. g., at University of Florida / Virginia Tech (Haftka, et al.)
 (Response Surface Approximations in High-dimensional Spaces Using Several Levels of Fidelity)
 - Approximation / modeling validation
 - E. g., at MIT / NASA Langley (Otto, et al.)
 (Computer Simulation Surrogates for Numerical Simulations and Optimization;
 Surrogate Pareto Approach to Shape Optimization)
 - Managing approximation models in optimization
 - E. g., at NASA Langley / ICASE;

Notre Dame / Virginia Tech (Rodriguez, et al.)
(Augmented Lagrangian Response Surface Approximations - Model Management Framework for General Constrained Optimization)

 Links to detailed information provided at: http://fmad-www.larc.nasa.gov/mdob

A Trust-Region Framework for Managing the Use of Approximation Models in Optimization

(Results by Alexandrov, et al. in Journal on Structural Optimization)

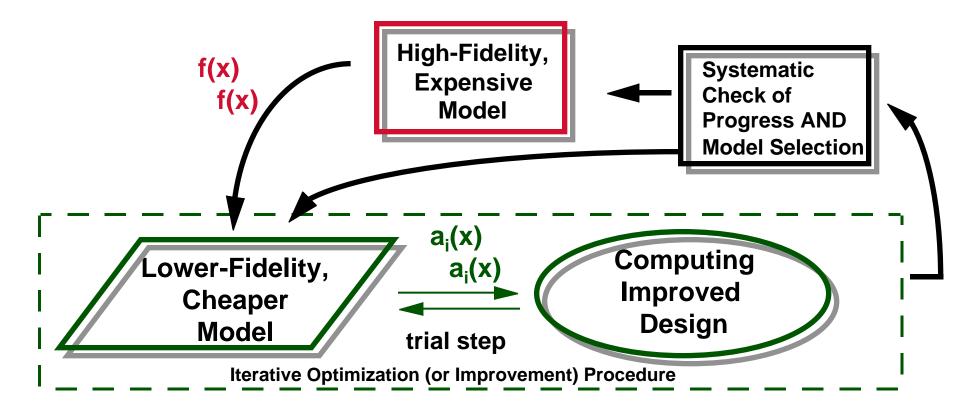
- This research considers general first order approximations and answers the question "How does one make an approximation scheme robust", in particular:
 - What does one do when the design derived with a lower-fidelity model fails to produce improvement in the true objective?
 - How does one use information about the predictive value of an approximation to adjust the amount of optimization with a lower-fidelity model before recourse to the higher-fidelity model?
 - How does one use approximations to yield an answer to the high-fidelity problem?

Observation:

 The framework provides a method for managing the use of models of varying physical fidelity

Model Trust-Region Approach with General Approximations

- f(x) high fidelity, expensive model, such as analysis or simulation
- a_i(x) one of the suite of lower fidelity or accuracy models of the same physical process



Requirements on the Approximation Model

• At each major point x_k , the following model consistency conditions are assumed to hold:

$$a_k(x_k) = f(x_k)$$

 $a_k(x_k) = f(x_k)$

- Observations:
 - Consistency is only enforced at the "anchor" points.
 - The gradients do not have to match exactly, but that is the assumption made in the published paper

Requirements on the Approximation Model:

Enforcing the Consistency Conditions

- In practice, consistency is an application dependent question, but there
 exist methods for enforcing consistency.
- Example: Correction by -correlation approach. Chang et al. (1993)

Assuming no specific functional form, let f_{lo} be a model of lower fidelity than f. Define

$$(x) = \frac{f(x)}{f_{lo}(x)}$$

Given X_k, build

$$_{k}(x) = (x_{k}) + (x_{k})^{T} (x - x_{k})$$

Use k to scale the lower-fidelity model f_{lo} :

$$f(x) = (x) a(x)$$
 $k(x) f_{lo}(x)$

Then

$$a_k(x) = {}_k(x) f_{lo}(x)$$

satisfies the consistency conditions.

The Algorithm with General Approximations

Choose $x_0 R^n$, $_0 > 0$

For k = 0, 1, ... until convergence do

Choose a_k such that $a_k(x_k) = f(x_k)$ and $a_k(x_k) = f(x_k)$

Compute an approximate solution s_k to subproblem:

minimize
$$a_k(x_k + s)$$

subject to $||s||_k$

Compare the actual and predicted decrease in f:

$$r = \frac{f(x_k) - f(x_k + s_k)}{f(x_k) - a_k(x_k + s_k)}$$

$$x_{k+1} = \begin{cases} x_k + s_k & \text{if } f(x_k + s_k) < f(x_k) \\ x_k & \text{otherwise} \end{cases}$$
 and

end do

$$k+1 = \begin{cases} c_1 ||s_k|| & \text{if } r < r_1 \\ \min \{c_2 ||s_k||, \max \} & \text{if } r > r_2 \\ ||s_k|| & \text{otherwise} \end{cases}$$
for some $r_1 < r_2 < 1$, $c_1 < 1$, $c_2 > 1$

Convergence Analysis

Observations:

- Practical performance will depend on the quality of the approximation models and their ability to predict the behavior of f.
- Options in case of unsuccessful step:
 - Improve model fidelity
 - Do less optimization reduce the trust-region radius.

• Convergence:

– We solve approximately:

minimize
$$a_k (x_k + s)$$

subject to $||s||_k$

with a_k - a general 1st order model.

- "Approximately" = s_k must satisfy Fraction of Cauchy Decrease (FCD). Use the variant: there exist , C > 0, independent of k, such that s_k satisfies

$$f(x_k) - q_k(x_k + s_k)$$
 || $f(x)$ || min ($_k$,|| $f(x_k)$ ||/C).

The following algorithm for solving the subproblem satisfies FCD:

Computing an approximate solution s_k

Given
$$x_k = R^n$$
, $k > 0$, choose (0,1), a_1 , $a_2 > 0$ and set $y_0 = x_k$, $y_0 = 0$.

For
$$j = 0, 1, ..., until_{1 k} ||v_j|| <_{2 k} do$$

Find an approximate solution p_i to:

minimize
$$q_j (y_j + p) = a_k(y_j) + a_k(y_j)^T p + 1/2 p^T H_j p$$

subject to $||p||_j$
 $||y_j + p||_k$

that satisfies FCD for a_k from y_j.

Compare the actual and predicted decrease in a_k :

$$r = \frac{a_k(y_j) - a_k(y_j + p_j)}{a_k(y_j) - q_j(y_j + p_j)}$$

Update y_j as indicated below, update j as k

$$V_{j+1} = V_j + (y_{j+1} - y_j)$$

end do

Set
$$s_k = v_i$$

Updating y_i : choose $\mu > 0$, independent of k, j, and set

If
$$y_j = x_k$$
, then $y_{j+1} = \begin{cases} y_j + p_j & \text{if } r > \mu \\ y_j & \text{otherwise} \end{cases}$

If
$$y_j = x_k$$
, then $y_{j+1} = \begin{cases} y_j + p_j & \text{if } r > 0 \\ y_j & \text{otherwise} \end{cases}$

Convergence Analysis

The subproblem is itself a TR subproblem

minimize
$$q_j (y_j + p) = a_k(y_j) + a_k(y_j)^T p + 1/2 p^T H_j p$$

subject to $||p||_j$
 $||y_j + p||_k$

- Exact and approximate solutions are given in Heinkenschloss (1994).
- Let p_N be the first acceptable step. It satisfies FCD for a_k at x_k and since $r > \mu$,

$$a_k(x_k) - a_k(x_k + p_N) \quad || \quad || \quad a_k(x_k)|| \quad min(x_k) = a_k(x_k)||/C|$$

• Applying the consistency conditions and assuming uniform boundedness in k of Hessians $^2a_k(x+s)$ for all s with $||s||_k$ (the latter guarantees the existence of , independent of k for which $_N$ $_k$) yields:

$$f(x_k) - a_k(x_k + p_N)$$
 $\mu || f(x_k)|| min(_k, || f(x_k)||/C).$

Convergence Analysis

- Since any steps after N decrease a_k further, the step produces FCD for a_k as an approximation of f at x_k and Powell's global convergence theorem (1975) is applicable:
 - If f is uniformly bounded below, uniformly continuously differentiable, and the Hessian approximations are uniformly bounded, then the sequence of iterates generated by a trust-region algorithm whose steps satisfy FCD satisfies

lim inf ||
$$f(x_k)$$
|| = 0
k ->

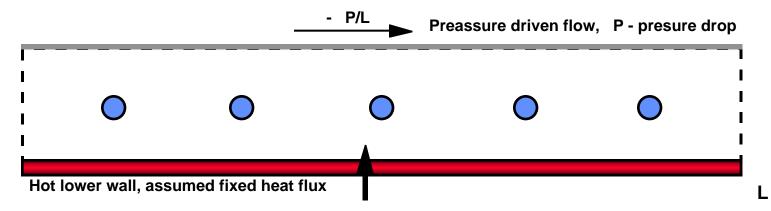
• The use of the acceptance criterion for y_j further guarantees that

$$\lim || f(x_k)|| = 0$$

k ->

Illustrative Example

"Eddy-Promoter" Heat Exchanger (analyses / codes by Otto et al.)



- Goal
 - Transfer heat from the lower surface into the fluid medium as efficiently as possible
- Objectives
 - Lower wall temperature
 - Lower preassure gradient
- Eddy-Promoter Configuration
 - Periodic array of cylindrical obstructions
 - Lowers critical parameter for onset of instability
 - Improved heat transport
- Governing Equations
 - 2-D incompressible Navier-Stokes

Place holder

Representative problem from:

"A Surrogate-Pareto Approach to Shape Optimization: Level Set Geometry Description" by John C. Otto Presented at the ICASE/LaRC Approximation Meeting July 21---23, 1997

Illustrative Example (cont.)

Preliminary Results on 1st Order Model Management

Preliminary results on first-order model management

- Assumptions
 - Model single periodicity cell (with doublets)
 - For initial computation, use fixed weights for the objectives
 - Use reduced problem (2 min. / N-S analysis)
- One function evaluation
 - (at k=0, provide an initial point (3 or 6 variables))
 - Generate a grid
 - Input grid to the N-S code to generate the values of f₁ and f₂
- Other ...
 - Derivatives are computed via finite differences
 - Lower-fidelity model is assumed to be a model with a coarser grid
- Preliminary impression
 - Promising results for the chosen models

Current Research: Constraints and MDO

Equality Constraints

- Extension of the 1st order model management framework via the multilevel algorithm for equality constrained optimization (Alexandrov, 1993)
- Global convergence results (Alexandrov, 1997)

General NLP

 Based on Alexandrov-El-Alem extension to general NLP of the multilevel algorithm for equality constrained optimization

MDO

Many research questions, dependent on problem formulations

Current Research: Some Novel Applications at MDOB

Applications

- High Speed Civil Transport (HSCT)
- Aerospike Nozzle Design for RLV Concepts
- Rotorcraft Blade Design

Common features:

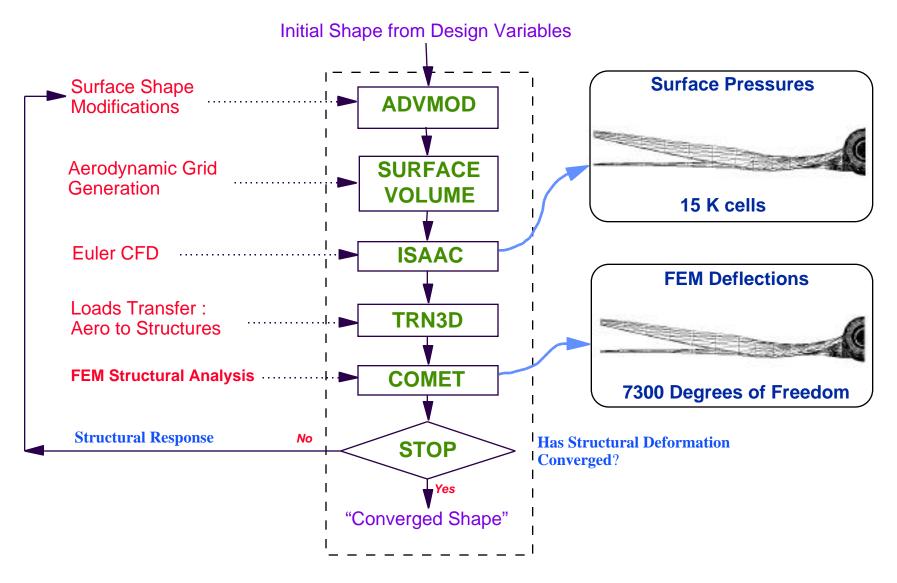
- When used in high-fidelity mode
 - Large number of variables and constraints
 - Computationally expensive
 - Interest in using both statistical approximations and lower-fidelity physical approximations

Novel Applications: HPCCP HSCT (Weston, et al.)

Problem Features:

- Components:
 - Multiblock Navier-Stokes CFD analysis & sensitivity
 - Adaptive FEM structural analysis & sensitivity
 - Many other disciplines
- Computationally intensive:
 - Medium-fidelity
 - One aeroelastic function evaluation (multidisciplinary analysis of 5 Gauss-Seidel iterations) requires 6 hours on a heterogeneous network of 4-5 machines; 20 hours on a dedicated machine
 - High-fidelity
 - One aeroelastic function evaluation is expected to require 5-6 days on a dedicated machine; 2 days on a parallel machine; 3-6 hours on 64-processor machine (O(10²) hours total)

Novel Applications: HSCT - Key Steps

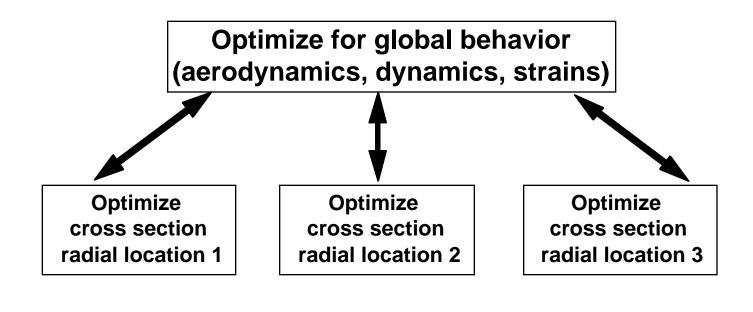


Novel Applications: Rotorcraft Blade Optimization (Walsh, et al.)

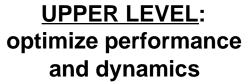
Problem Features:

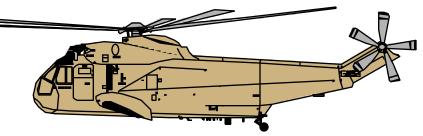
- Large number of design variables and constraints
- A multilevel approach to solution
- Computationally intensive
 - One function evaluation requires 30 minutes

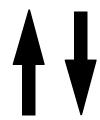
Integrated Aerodynamic/Dynamic/Structural (IADS) Solution Strategy



Integrated Aerodynamics/Dynamics/Structures (IADS)







Compromise between stiffness required by upper level and attainable in lower level

LOWER LEVEL: design internal structure at radial location i

Novel Applications: Aerospike Engine Design (Korte, et al.)

Problem Features:

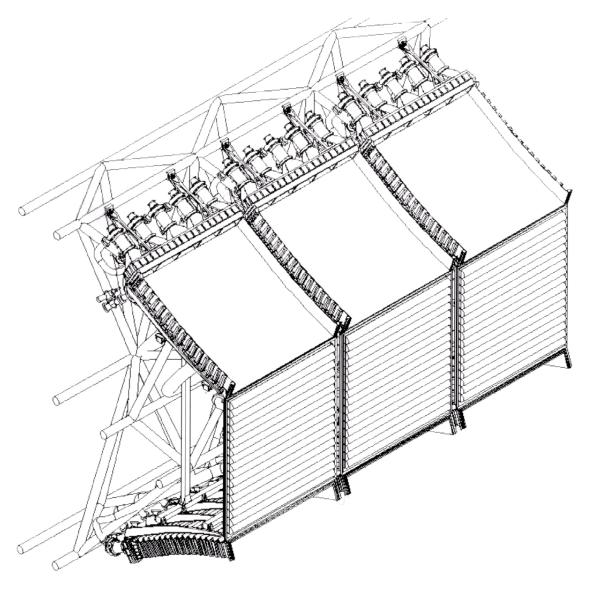
- Components:
 - Aerodynamics, structures, trajectory
 - High accuracy required due to sensitivity of SSTO vehicle performance
 - Minimize GLOW (Gross Lift-Off Weight) subject to structural constraints
 - One case: 16 variables, 596 structural constraints
 - Multidisciplinary feasible formulation used
- Computationally intensive
 - Low-fidelity
 - Medium-Fidelity
 - High-fidelity

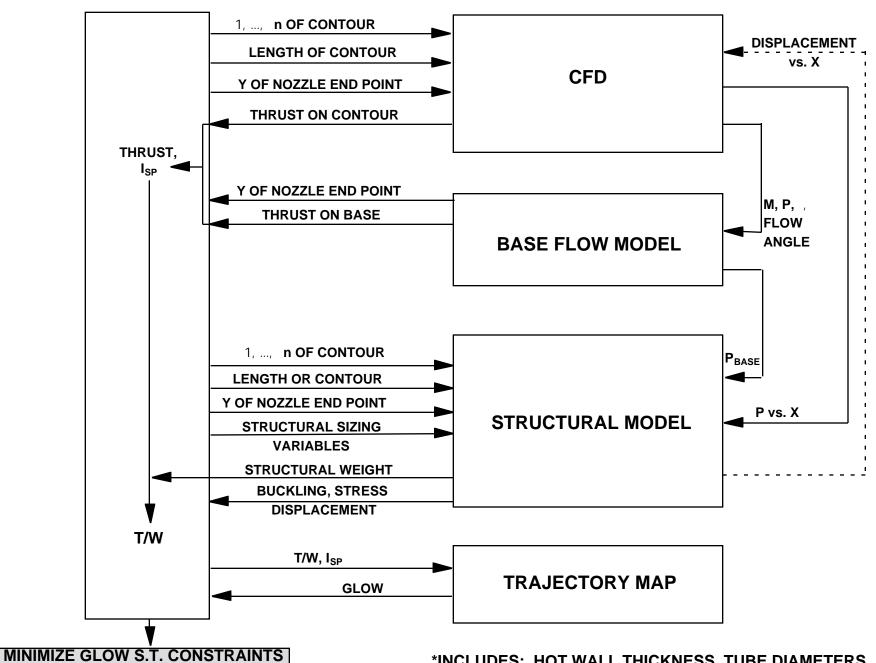
RLV X-33 Concepts

McDonnell Douglas/Boeing

Lockheed Martin

AEROSPIKE ENGINE





Summary

- Extensive, long-standing research on approximations in engineering optimization
- Benefit of research on approximations
 - An opportunity to adapt state-of-the-art optimization algorithms to practical computational engineering
- Introduced a framework for managing 1st order models in optimization
 - Globally convergent
 - Arbitrary models with consistency requirements
- Ongoing research open questions:
 - Usefulness in practice
 - Testing on increasingly realistic problems
 - Resolving consistency conditions in practice
 - MDO

